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a b s t r a c t

A numerical study is performed for the melting process of ice-saturated porous medium filled in a rect-
angular waveguide with a resonator subjected to electromagnetic energy. A microwave system supplies a
monochromatic wave in a fundamental mode (TE10 mode) with operating frequency of 2.45 GHz. Focus is
placed on establishing a computationally efficient approach for solving moving boundary heat transfer
problem in a two-dimensional structured grid. Numerically, preliminary grids are first generated by an
algebraic method, based on a transfinite interpolation method, with subsequent refinement using a
PDE mapping method. A preliminary case study indicates successful implementation of the numerical
procedure. The predicted results from two-dimensional melting model are then validated against avail-
able experimental results and subsequently used as a tool for efficient computational prototyping. Based
on the numerical results are performed illustrating the influence of resonator and layered configuration,
in case of the installed resonator has strongly affected on the microwave power absorbed, temperature
distribution, and the melting front during microwave melting process.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The study of melting process in material exposed to microwave
has been investigated by many researchers. Pangrle et al. [1] stud-
ied coupled electromagnetic and thermal model for the thawing
process of frozen cylinders (water and NaCl) using a plane wave
as opposed to a resonant cavity. They also developed a one-dimen-
sional model for microwave thawing of cylindrical samples [2].
Rattanadecho [3] recently presented theoretical and experimental
investigation of microwave thawing of frozen layer in a microwave
oven using coordinate transformation technique based on bound-
ary fixed grid method together with an implicit time scheme. A
number of other analyses of the microwave thawing process have
appeared in the literatures [4,5]. Moreover, most previous work the
microwave power absorbed term was assumed to be decay expo-
nentially into the sample following Lambert’s law. This assumption
is only valid for the large dimension samples where the depth of
sample is much larger than the penetration depth. Otherwise in
the thin samples where the depth of sample is much smaller than
the penetration depth, the spatial variations of the electromagnetic
field and microwave power absorbed within sample must be
obtained by Maxwell’s equation. The prior investigation of two-

dimensional microwave melting in cylinders was carried out by
Zeng and Faghri [6], and their model predictions were compared
with experimental data. Basak and Ayappa [7] also considered
the two-dimensional microwave thawing studies with fixed grid
based effective heat capacity method coupled with Maxwell’s
equations. The primary focus of their article is to incorporate and
investigate the effect of liquid convection during thawing of a pure
material with microwave. For previous work numerically results
were performed using the conventional methods such as finite dif-
ference and finite element method.

In addition, Rattanadecho [8] developed two-dimensional mod-
els to predict the electromagnetic fields (TE10 mode) inside the
waveguide, microwave power absorbed, and temperature distribu-
tions within wood located in rectangular waveguide. In this study,
the simulation results were shown to influence of irradiation time,
working frequency and sample size on heating patterns were
investigated in details. Rattanadecho and Klinbun [9] then recently
carried out theoretically analysis of microwave heating of dielec-
tric materials with various resonator distances. This study found
that the resonator was significantly affected on a uniformity of
temperature distributions depending on the penetration depth of
microwave. Furthermore, Rattanadecho et al. [10] investigated
numerically and experimentally the melting of frozen packed beds
by a microwave with a rectangular waveguide in case of without
installed resonator. However, the studied in case of microwave
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melting of ice-saturated porous medium including resonator ef-
fects has not been investigated before.

Transient heat transfer problem involving melting or solidifica-
tion processes generally refer to as moving boundary or phase
change problems. They are important topics which span a broad
spectrum of scientific and engineering discipline such as thawing
of freezing of soil, ice formation, food processing and numerous
others. The some up to date reviews of these problems are avail-
able [11,12]. In the past, a variety of conventional numerical tech-
niques have been developed for solving these problems, including
the enthalpy [13,14], isotherm migration [15], and coordinate
transformation methods [16,3]. Previous works on multidimen-
sional moving boundary problems include Chatterjee and Prasad
[17] adopted a generalized finite volume discretization scheme
using a nonorthogonal curvilinear body-fitted transformation,
which inherently facilitates accurated tracking of moving inter-
faces via adaptive grid generation in a full 3D framework, and Gong
and Mujumdar [18] used the streamline Upwind/Petrov Galerkin
finite element method in combination with fixed grid primitive
variable method to simulate melting of a pure phase change mate-
rial in 2D rectangular container.

Conventionally numerical methods have been widely used due
to easy to handle numerical algorithms for phase change problem.
However, in numerical approximations used in this method with
discontinuous coefficients, often the largest numerical errors are
introduced in a neighborhood of the discontinuities particularly
for phase change in geometry complexity as well as boundary
condition.

The troublesome numerical errors in conventional method are
effectively reduced if the grid generation and solution procedure
are separated with the discontinuities and special formulas are
used to incorporate the jump conditions directly into the numeri-
cal model. This is the main idea behind this work considering mov-
ing boundary as a parameter.

To create a computational grid in body-fitted coordinates, two
basic steps required: (1) define an origin point and (2) specify
the distribution (number and spacing) of grid nodes along the
edges of the geometric regions. The automatic grid generator then
takes over, and using an algebraic technique known as transfinite
interpolation, creates a grid that simultaneously matches the edge
node prescription and conforms to the irregular edges of the body-
fitted geometry. Grid generation by algebraic methods produces
high quality numerical grids and allow for the very efficient
integration of the thermal-flow field physics. Considering grid

optimization, the designed grid optimization-algorithm improves
upon the transfinite interpolation method by carrying the grid gen-
eration process one step further. It uses automatically generated
grid as an initial approximation to a higher quality grid system de-
rived utilizing the technique of PDE grid generation. This technique
offers advantages over purely algebraic methods:

� Good control over the skewness and spacing of the derived grid
on surface interiors, while simultaneously allowing complete
control over the grid spacing (node distribution) on surface
edges as well as moving boundary.
� An ability to produce unique, stable, and smooth grid distribu-

tions free of interior maxima or minima (inflection points) in
body-fitted coordinates.

Parabolic grid generation works well with irregularly shaped
geometries and can produce grids that are highly conformal with
the edges of individual computational surfaces. The means for grid
generation should not be dictated by the limitations of a given spe-
cific field solution procedure and conversely the method that
determines the field should accept as input an arbitrary set of coor-
dinate points which constitutes the grid. In general, of course,
these two operations can never be totally independent because
the logistic structure of the information, the location of outer
boundaries, the nature of coordinate and the types of grid singular-
ities are items that have to be coordinated closely between the
field solver and the grid generator [19].

Grid generation for multi-dimensional geometries using transfi-
nite interpolation functions was studied by Cook [20], Gordon and
Hall [21], Ettouney and Brown [22] successfully modeled slightly
non-planar interfaces by using an algebraic grid generation system
where the interface was described in terms of univariate function.

Although grid generation is the heart of most numerical algo-
rithms for flow problems or non-phase change problem, little effort
has been reported on phase change problems, particularly the
problem that is to couple the grid generation algorithm with the
heat transport equations.

The present paper introduces the novel numerical approach, a
combined transfinite interpolation and PDE methods [23,24], for
solving two-dimensional melting model under electromagnetic en-
ergy which is subjected to a monochromatic microwave TE10 mode
with operating frequency of 2.45 GHz. However, the effect of reso-
nator on microwave phenomena in the case of using a rectangular
waveguide with a resonator has not been clearly studied yet. The

Nomenclature

a thermal diffusivity (m2/s)
A, B univariate blending function (�)
Cp specific heat capacity (J/(kg K))
E electric fields intensity (V/m)
f frequency of incident wave (Hz), and interpolation func-

tion (�)
H magnetic field intensity (A/m)
L latent heat (J/kg)
P power (W)
Q local electromagnetic energy term (MW/m3)
S Poynting vector (W/m2)
T temperature (�C)
t time (s)
tan d dielectric loss coefficient (�)
u, w interpolation parameter (�)
x, z Cartesian coordinates
ZH wave impedance (X)

ZI intrinsic impedance (X)

Greek letters
e permittivity (F/m)
k thermal conductivity (W/m K), and wavelength (m)
l magnetic permeability (H/m)
t velocity of propagation (m/s)
q density (kg/m3)
r electric conductivity (S/m)
n, g transformed coordinates

Subscripts
in input
l unfrozen
mov moving boundary
s frozen
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objective of this study can be summarized as follows: (i) It is car-
ried out to predict the melting front, the distribution of tempera-
tures, microwave power absorbed terms, and electromagnetic
fields and (ii) The influences of resonator and layered configura-
tions on melting process are clarified in details. Furthermore,
numerically in order to generate a boundary/interface fitted coor-
dinate system, structured grids are initialized using transfinite
interpolation algebraic techniques and the quality of structured
grids can be significantly improved by applying parabolic-PDE
methods. These methods iteratively solve unsteady conduction’s
equation together with moving boundary condition during the
melting process considering conduction as the only mode of heat
transfer in both the unfrozen layer and the frozen layer.

2. Experimental configuration

Fig. 1 shows the experimental apparatus for microwave melting
system. It was developed for the melting tests to validate the mod-
el simulation. The rectangular waveguide system is operated by
propagating traveling waves along the z-direction of the rectangu-
lar waveguide with the inner dimensions of 109.2 � 54.6 mm to-
ward a water load that is situated at the end of the waveguide.
The water load (lower absorbing boundary) ensures that only a
minimal amount of microwave is reflected back to the sample.
Also, an isolator (upper absorbing boundary), which is located at
the upper end of waveguide, is used to trap any microwave re-
flected from the sample to prevent it from damaging the magne-
tron. In the microwave supply system a magnetron generated the
monochromatic wave of TE10 mode with operating frequency of
2.45 GHz, and output of magnetron is adjusted as 1000 W [8].

Next, the samples used for testing in microwave melting pro-
cesses are considered. The sample is composed of an unfrozen
layer (water and glass beads) with thickness of 50 mm and a frozen
layer (ice and glass beads) with thickness of 50 mm. They are ar-
ranged in series against perpendicular to direction of irradiation
via a rectangular waveguide. The unfrozen layer and the frozen
layer are arranged in different configurations, as shown in state
(a) and state (b) of Fig. 1(b), respectively. The dielectric properties
of the each material of samples are assumed to be independent
with microwave frequency. The thermal and dielectric properties
of the samples are shown in Table 1.

3. Mathematical formulations

Generally, studies on the microwave melting involve solutions
of the equations governing electromagnetic propagation, i.e., Max-
well’s equations, either by themselves or coupled with the heat
transport equation. The surface of a sample is exposed to the
monochromatic wave of TE10 mode with operating frequency of
2.45 GHz (shown as Fig. 2(a)).

3.1. Electromagnetic field equation

Fig. 2 shows the two-dimensional analytical model for micro-
wave melting of a sample using a rectangular waveguide with a
resonator. The proposed model is based on the following
assumptions:

Fig. 1. Experimental apparatus: (a) microwave heating system and (b) the melting
sample.

Table 1
Thermal and dielectric property of the unfrozen and frozen layer.

Properties Unfrozen layer Frozen layer

q (kg/m3) 1942.0 1910.0
a (m2/s) 0.210 � 10�6 0.605 � 10�6

k (W/m K) 0.855 1.480
Cp (J/kg K) 2.099 � 103 1.281 � 103

lr (�) 1.0 1.0
er (F/m) 88.15 � 0.414T + (0.131 � 10�2)T2 �

(0.046 � 10�4)T3
5.1

tan d (�) 0.323 � (9.499 � 10�3)T + (1.27 � 10�4)T2 �
(6.13 � 10�7)T3

0.0124

Incident 
microwave

Resonator

Incident 
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Resonator

Incident 
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Melting front t
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b

Fig. 2. The microwave system: (a) schematic of microwave system and (b) the
physical model (in case of state (b)).
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(1) Since the microwave field in the TE10 mode has no variation
of field in the direction between the broad faces, a two-
dimensional model over the x–z plane is applicable to anal-
ysis of electromagnetic field inside a rectangular waveguide
[25].

(2) The absorption of microwave energy by the cavity (including
air) in the rectangular waveguide is negligible.

(3) The walls of a rectangular waveguide are perfect conductors.
(4) The effect of the sample container on the electromagnetic

field can be neglected.

The electromagnetic field is solved according to the theory of
Maxwell’s equations. In this study, the microwave of a fundamen-
tal TE10 mode is considered; therefore the Maxwell’s equations in
terms of the electric field intensity E and magnetic intensity H
are given by:

@Ey

@z
¼ l @Hx

@t
ð1Þ

@Ey

@x
¼ �l @Hz

@t
ð2Þ

� @Hz

@x
� @Hx

@z

� �
¼ rEy þ e

@Ey

@t
ð3Þ

where the permittivity e, magnetic permeability l and electric con-
ductivity r as:

e ¼ e0er; l ¼ l0lr ; r ¼ 2pf e tan d ð4Þ

Additionally if magnetic effects are negligible, which is proven to be
a valid assumption for most dielectric materials used in microwave
heating applications, the magnetic permeability l is well approxi-
mated by its value l0 in the free space. Let tan d is the loss tangent
coefficient. In this work, the dielectric properties are assumed to
vary with temperature only.

Boundary conditions: corresponding to the analytical mode as
shown in Fig. 2, can be given as follows:

(a) Perfectly conducting boundaries. Boundary conditions on
the inner wall surface of a rectangular waveguide are given
by using Faraday’s law and Gauss’s theorem:

Et ¼ 0; Hn ¼ 0 ð5Þ

where subscripts t and n denote the components of tangential and
normal directions, respectively.

(b) Continuity boundary condition. Boundary conditions along
the interface between different materials, for example
between air and dielectric material surface, are given by
using Ampere’s law and Gauss theorem:

Et ¼ E0t; Ht ¼ H0t; Dn ¼ D0n; Bn ¼ B0n ð6Þ

where D is the electric flux density and B is the magnetic induction.
The superscript

0
denotes one of the different materials.

(c) Absorbing boundary condition. At the both ends of the rect-
angular waveguide, the first order absorbing conditions are
applied [26]:

@Ey

@t
¼ �t

@Ey

@z
ð7Þ

where ± represents forward or backward waves and t is phase
velocity of microwave. In case of installed resonator; the resonator
boundary condition is applied at the end of rectangular waveguide:

Ey ¼ 0; Hz ¼ 0 ð8Þ

(d) Oscillation of the electric and magnetic flied intensities by
magnetron. Incident wave due to magnetron is given by
the following equations:

Ey ¼ Eyin sin
px
Lx

� �
sinð2pftÞ ð9Þ

Hx ¼
Eyin

ZH
sin

px
Lx

� �
sinð2pftÞ ð10Þ

where Eyin is the input value of electric field intensity, Lx is the
length of rectangular waveguide in x-direction and ZH is the wave
impedance defined as:

ZH ¼
kgZI

k
¼ kg

k

ffiffiffiffi
l
e

r
ð11Þ

The power flux associated with a propagating electromagnetic wave
is represented by the Poynting vector:

S ¼ 1
2

Reð~E� ~HÞ ð12Þ

The Poynting theorem allows the evaluation of the microwave
power input expressed as

Pin ¼
Z

A
SdA ¼ A

4ZH
E2

yin ð13Þ

where ZI denotes intrinsic impedance depending on the properties
of the material. k and kg are the wave lengths of microwaves in free
space and rectangular waveguide, respectively.

3.2. Heat transport equation

The schematic of microwave system as displayed in Fig. 2(a).
Initially, the walls are all insulated, and the sample is composed
of a water-saturated porous medium (water and glass beads) and
an ice-saturated porous medium (ice and glass beads), respec-
tively. The temperature of the sample exposed to incident wave
is obtained by solving the conventional heat transport equation
with the microwave power absorbed included as a local electro-
magnetic energy term. In order to reduce complexity of the phe-
nomena for analyze the process of heat transport due to
microwave melting of a sample, several assumptions have been
introduced into the heat equations as following assumptions:

(1) Corresponding to electromagnetic field, temperature field
also can be assumed to be two-dimensional plane (x–z
plane).

(2) The walls of sample are insulated.
(3) The effect of the container on temperature field can be

neglected.
(4) The effect of the natural convection in the sample can be

neglected.
(5) The local thermodynamic equilibrium along each phase is

assumed.
(6) In this study, in a macroscopic sense, the pore structure

within the material is assumed to be homogeneous and iso-
tropic. Therefore, the heating model for a homogeneous and
isotropic material is used in the current analysis.

The governing energy equations describing the temperature rise
in a sample are the time dependent heat diffusion equation for
two-dimensional heat flow with constant thermal properties for
both the unfrozen and frozen layer, respectively as:

@Tl

@t
¼ al

@2Tl

@x2 þ
@Tl

@z2

 !
þ Q

q � Cp
þ @Tl

@z
dz
dt

ð14Þ

@Ts

@t
¼ as

@2Ts

@x2 þ
@2Ts

@z2

 !
þ Q

q � Cp
þ @Ts

@z
dz
dt

ð15Þ

where Q is local electromagnetic energy term, which is function of
the electric field and defined [25] as
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Q ¼ 2pf e0er tan dE2
y ð16Þ

Besides, last term of Eqs. (14) and (15) result from a coordinate
transformation attached to moving boundary. In the unfrozen layer,
internal convection can be neglected because the presence of glass
beads minimizes the effect of natural convection current.

Boundary conditions:

(a) Adiabatic condition; assuming that the walls of the sample
are insulate:

@T
@n
¼ 0 ð17Þ

(b) Moving front boundary condition; the moving boundary
between the unfrozen layer and frozen layer is described
by the Stefan equation, which is obtained from a consider-
ation of the energy balance at the interface between the
unfrozen and frozen layer provides the following equation:

ks
@Ts

@z
� qmovDzmov � kl

@Tl

@z

� �
1þ @zmov

@x

� �2
" #

¼ qsLs
@zmov

@t

ð18Þ

where subscript mov denotes solid–liquid front (melting front),
ozmov/ot is the velocity of fusion front or melting front, and Ls the la-
tent heat of fusion. To avoid changes in the physical dimensions as
the melting front progresses, qs = ql will be specified. In this study,
the thermal conductivities, kl and ks are bulk-average values for the
glass beads and the water or ice, respectively.

4. Grid generation

Generally, two types of structured grid generation are in used:
algebraic method, i.e., transfinite or multivariate interpolation
and partial differential equation mapping (PDE mapping) methods.
Transfinite interpolation provides a relatively easy way of obtain-
ing an initial grid that can be refined and smoothed by other meth-
ods, whether algebraic, PDE (this work), or variational method. For
more complex geometries, such as this work, it is preferable to
construct grid initially by transfinite interpolation, and to refine
the grid filled in Cartesian coordinates in the interior of a domain
by PDE mapping method subsequently.

4.1. Transfinite interpolation

The present method of constructing a two-dimensional bound-
ary-conforming grid for a phase change in microwave melting is a
direct algebraic approach based on the concept of transfinite inter-
polation. In this method, no partial differential equations are
solved to obtain the curvilinear coordinates, and the same system
is used for the entire domain. The algebraic method can be easier
to construct than PDE mapping methods, and give easier control
over grid characteristics such as orthogonality and grid point spac-
ing. However, this method is sometime criticized for allowing dis-
continuities on the boundary to propagate into the interior and for
not generating grids as smooth as those generated by PDE mapping
method. The main idea behind this work, prior to generation of
grids by PDE mapping methods, it is preferable to obtain first pre-
liminary grids using the algebraic method, i.e., transfinite interpo-
lation method. The combined transfinite interpolation and PDE
mapping method is used to achieve a very smoother grids point
distribution and boundary point discontinuities are smoothed out
in the interior domain.

For the concept of transfinite interpolation, a significant exten-
sion of the original formulation by Gordon and Hall [21] has made,
it is possible to initially generate global grid system with geometry

specifications only on the outer boundaries of the computation do-
main and yet obtain a high degree of local control. Moreover, to
successfully track the moving boundary front, the grid generation
mapping must adapt to large deformations of the interface shape
while maintaining as much orthogonality and smoothness as pos-
sible. Due to the generality of the method it has been possible to
use more advanced mappings than conventional types and thereby
improve the overall efficiency of the grid in term of computational
work for a given resolution.

In Fig. 3, the present method of constructing a two-dimensional
boundary-conforming grid for a system, which it is a direct alge-
braic approach based on the concept of transfinite or multivariate
interpolation. It is possible to initially generate global single plane
transformations with geometry specifications only on outer
boundaries of the computational domain.

Let f(u, w) = (x(u, w), z(u, w)) denote a vector-valued function of
two parameters u, w defined on the region u1 6 u 6 umax, w1 6

w 6 wmax. This function is not known throughout the region, only
on certain planes (Fig. 3). The transfinite interpolation procedure
then gives the interpolation function f(u, w) by the recursive
algorithm [24]:

f ð1Þðu;wÞ ¼ A1ðuÞ � f ð1;wÞ þ A2ðuÞ � f ðumax;wÞ
f ðu;wÞ ¼ f ð1Þðu;wÞ þ B1ðwÞ � ½f ðu;1Þ � f ð1Þðu;1Þ�

þ B2ðwÞ � ½f ðu;wmaxÞ � f ð1Þðu;wmaxÞ�
ð19Þ

where A1(u), A2(u), B1(w) and B2(w) are defined the set of univariate
blending functions, which only have to satisfy the conditions:

A1ð1Þ ¼ 1; A1ðumaxÞ ¼ 0; A2ð1Þ ¼ 0; A2ðumaxÞ ¼ 1
B1ð1Þ ¼ 1; B1ðumaxÞ ¼ 0; B2ð1Þ ¼ 0; B2ðumaxÞ ¼ 1

Further, the general form in algebraic equations can be defined as:

A1ðuÞ ¼
umax � u
umax � 1

; A2ðuÞ ¼ 1� A1ðuÞ;

B1ðwÞ ¼
wmax �w
wmax � 1

; B2ðwÞ ¼ 1� B1ðwÞ ð20Þ

The grid motion defined from a moving boundary motion is
modeled using a Stefan equation (Eq. (18)) with a transfinite map-
ping method. Furthermore, the boundary fitted grid generation
mapping discussed in this section forms the basis for the interface
tracking mapping. However, the mapping must now match the
interface curve on the interior of physical domain in addition to fit-
ting the outer physical boundary. In addition, the system must be
adaptive since the grid lines must change to follow the deforming
interface while maintaining as much smoothness and orthogonal-
ity as possible.

Fig. 3. The parametric domain with f(u, w) specified on planes of constant u, w.
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4.2. PDE mapping

In the proposed grid generation mapping, all grids discussed
and displayed have been couched in terms of finite difference
algorithm applications, with the understanding that whatever
non-uniform grid exists in the physical space, there is exist a trans-
formation which will recast it as a uniform rectangular grid in the
computational space. The finite difference calculations are then
made over this uniform grid in the computational space, after
which the field results are transferred directly back to the corre-
sponding points in the physical space. The purpose of generating
a smooth grid that conforms to physical boundaries of problem
is, of course, to solve the partial differential equations specified
in the problem by finite difference scheme, capable of handling
general non-orthogonal curvilinear coordinates.

Corresponding to Fig. 2(b), as melting proceeds, a melting front
denoted here zmov is formed. Due to the existence of this melting
front, the frozen and unfrozen domains are irregular and time
dependent. To avoid this difficulty, a curvilinear system of coordi-
nates is used to transform the physical domain into rectangular re-
gion for the computational domain.

It is convenient to introduce a general curvilinear coordinate
system as follows Anderson [27]:

x ¼ xðn;gÞ; z ¼ zðn;gÞ or n ¼ nðx; zÞ; g ¼ gðx; zÞ ð21Þ

The moving boundaries are immobilized in the dimensionless (n, g)
coordinate for all times. With the details omitted, then the transfor-
mation of electromagnetic field equation (Eqs. (1), (2), (3), and (7))
can be written respectively as [10]:

1
J

xn
@Ey

@g

� �
¼ l @Hx

@t
ð22Þ

� 1
J

zg
@Ey

@n

� �
� zn

@Ey

@g
¼ �l

@Hz

@t
ð23Þ

� 1
j

zg
@Hz

@n
� zn

@Hz

@g

� �
� xn

@Hx

@g

� �� �
¼ rEy þ e

@Ey

@t
ð24Þ

@Ey

@t
¼ t

1
J

xn
@Ey

@g

� �
ð25Þ

Also the heat transport equations (Eqs. (14) and (15)), and Stefan
condition (Eq. (18)) can be transformed into (n, g) coordinate as
below:

@Tl
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¼ al

J2 a
@2Tl

@n2 � 2b
@2Tl

@n@g
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@2Tl

@g2
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@2x

@n2
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@Tl

@g
� zg

@Tl

@n
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@2z
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@Tl

@g

� �
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ð26Þ

@Ts
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@2Ts

@n2 � 2b
@2Ts

@n@g
þ c

@2Ts

@g2
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@2x

@n2
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@Ts

@g
� zg

@z
@n
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@2z
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q � Cp
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ð27Þ

ks
1
J

xn
@Ts

@g

� �
� kl

1
J

xn
@Tl

@g
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1þ 1

J
zg
@zmov

@n
� zn

@zmov

@g

� �� �2
( )

¼ qsLs
@zmov

@t
ð28Þ

where J = xn � zg � xg � zn, a ¼ x2
g þ z2

g; b ¼ xn � xg þ zn � zg; c ¼ x2
n þ z2

n

and, xn, xg, zn and zg denote partial derivatives, J is the Jacobian, b,
a, c are the geometric factors and g, n are the transformed coordi-
nates [27].

5. Solution method

It is known that the inherent difficulties in the conventional
numerical methods (pure parabolic grid generators) for melting or
freezing problems suggest the use of combined transfinite interpola-
tion and PDE methods in most instances. Although conventional
numerical methods can be used to obtain satisfactory results, there
are problems of large time consumption and control functions that
are often difficult to determine. Therefore, the new method pre-
sented in this paper is generally preferable because it offers the high-
est overall accuracies and smooth grid point distribution. In addition,
the boundary point discontinuities are smoothed out in the interior
domain and orthogonality at boundaries can be maintained.

During the solving of a moving boundary problem including
phase change in microwave melting process, complications arise
due to the motion of melting front with elapsed time. In this study,
the description of heat transport equations (Eqs. (14) and (15)) re-
quires specification of the temperature T in sample layers and
moving front boundary is solved. Theses equations are coupled to
the Maxwell’s equations (Eqs. (1)–(3)) by Eq. (16). The latter equa-
tion represents the heating effect of microwaves in both the unfro-
zen and frozen layer. Therefore, the numerical schemes of the
microwave melting process are performed.

5.1. Electromagnetic field discretization

Generally, simulation of microwave power dissipation requires
the solution of the set of three coupled scalar partial differential
equations governing electromagnetic propagation, i.e., Maxwell’s
equation, inside a rectangular waveguide. The finite difference
time-domain (FDTD) method has been used to provide a full
description of electromagnetic scattering and absorption and give
detailed spatial and temporal information of wave propagation.

In this study, the leapfrog scheme is applied to a set of Max-
well’s equations. The electric field vector components are offset
one half-cell in the direction of their corresponding components,
while the magnetic field vector components are offset one half-cell
in each direction orthogonal to their corresponding components
[28]. The electric and magnetic fields are evaluated at alternative
half time steps. For TE10 mode, the electric and magnetic field com-
ponents are expressed by the total field FDTD equations as
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5.2. Heat transport discretization

The transient heat equation (Eqs. (14) and (15)) and the Stefan
condition (Eq. (18)) are solved by using finite difference method. A
system of nonlinear equations results whereby each equation for
the internal nodes can be cast into a numerical discretization, as
shown below;

In transient heat equation for unfrozen layer,
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In transient heat equation for frozen layer,
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In Stefan condition,
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The details of computational schemes and strategy for solving the
combined transfinite interpolation functions (Eqs. (19) and (20))
and PDE mapping (Eqs. (29)–(34)) are illustrated in Fig. 4.

5.3. The stability and accuracy of calculation

Due to dielectric properties of the most liquids are depending
on temperature so it is necessary to consider the coupling model

for analysing the E field and the temperature distribution. For this
reason, the iteration scheme (reference from Ratanadecho et al.
[10]) is used to resolve the non-linear coupling of Maxwell’s equa-
tions, and energy equations. Spatial and temporal resolution is se-
lected to ensure of stability and accuracy. To insure stability of the
time-stepping algorithm Dt is chosen to satisfy the courant stabil-
ity condition [25]:

Dt 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDzÞ2

q
t

ð35Þ

And the spatial resolution of each cell defines as:

Dx;Dz 6
kg

10
ffiffiffiffi
er
p ð36Þ

where t is the velocity of an electromagnetic wave. Corresponding
to Eqs. (35) and (36), the calculations are as follows:

(1) Initial grid size: Dx = 1.0922 mm and Dz = 1.0000 mm.
(2) Time steps: Dt = 2 � 10�12 s and Dt = 1.0 s are used corre-

sponding to electromagnetic field, and temperature field cal-
culations and location of melting front, respectively.

(3) Relative error in the iteration procedures of 10�6 is chosen.

6. Results and discussion

The present work is to couple the grid generation algorithm
with electromagnetic field and heat transport equations. The ther-
mal analysis during melting process will be discussed in next
subsection.

6.1. Physical description

The sample is composed of an unfrozen layer (water and glass
bead) and a frozen layer (ice and glass bead). The unfrozen layer
and the frozen layer are arranged in different configurations, as
shown in state (a) and state (b) of Fig. 1(b), respectively. It is con-
sidered to illustrate microwave melting phenomena by using a
rectangular waveguide incase of with and without resonator. In
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Fig. 4. The computational scheme.
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case of without a resonator, all transmitted waves through the
sample are absorbed by fixed water load at end of the waveguide
(lower boundary condition). Unlike for the case with resonator that
perfectly conducting plate is installed at the end of waveguide to
enhance resonance of standing wave inside a rectangular wave-
guide as well as the sample.

6.2. A melting front tracking grid generation system

The efficiency of the grid generation system is illustrated during
the melting of ice-saturated porous medium (porosity, / = 0.38)
subjected to electromagnetic energy. Fig. 5(a) shows the initial ref-
erence grid for the domain generated by pure transfinite interpola-
tion method. Fig. 5(b) shows grid that fit curves that are typical of
shapes seen during deformation of an interface with respect to
elapsed time at t = 60 s. The calculated front locations correspond
to the initial temperature of 0 �C and supplied microwave power
level of 1000 W. It is found that the grid is able to maintain a sig-
nificant amount of orthogonality and smoothness both within the
interior and along the boundary as the grid points redistribute
themselves to follow the interface. These results show the effi-
ciency of the present method for the multi-dimensional moving
boundary problem.

6.3. Numerical validation

Fig. 6(a) and (b) shows the present simulation results compared
with experimental data of melting front within the layered sample
without resonator in which state (a) and state (b), corresponding to
the initial temperature of 0 �C for both a frozen layer and an unfro-
zen layer.

It is observed that the trends of results are in good agree-
ment. However, at longer melting times (90 s) in case of state
(b), the experimental data is significantly higher than that the
simulation results. The source of the discrepancy is the non-uni-
form heating effect along the axis, which accounts for the fact
that the incident microwave at the surface of a layered sample
is non-uniform. Numerically, the discrepancy may be attributed
to uncertainties in the thermal and dielectric property database,
and the mechanism of natural convective heat transfer is not
considered. On the other hand during the experiment of micro-
wave melting process, the impact on the uncertainty of our data
may cause by variations in humidity, room temperature and an-
other effects. The uncertainty in melting kinetics was assumed
to result from errors in the measured melting front of the
sample.
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6.4. Electric field distribution

Fig. 7(a) and (b) illustrates the electric field distribution along
the center axis (x = 54.6 mm) of rectangular waveguide at t = 60 s
for different sample configuration as state (a) and state (b), in case
of with and without resonator. In these figures, the vertical axis
represents the intensity of the electric fields Ey, which is normal-
ized to the amplitude of the input electric fields Eyin. A solid line
represents the electric fields distribution inside a rectangular
waveguide for the cases without resonator; all transmitted waves
through the sample are absorbed by water load at the end of the
waveguide. Since the sample is composed of the unfrozen layer
and frozen layer. In addition, the unfrozen layer is a highly absorp-
tive material (higher dielectric loss factor) while the frozen layer is
a highly transparent material (low dielectric loss factor), where a
larger part of microwave is able to transmit through this layer.
For the case of state (a), the unfrozen layer considered as high lossy
material has a short wavelength, which correspond to higher
microwave power absorbed. It is observed from the figures that
the resonance of standing wave configuration inside the sample
is weak as compared to left-hand side of the sample. The some part
of microwave is transmitted through the sample and then ab-
sorbed by water load at the end of the waveguide. Focusing atten-
tion of electric field distribution inside the cavity (left-hand side), a
stronger standing wave with large amplitude is formed by interfer-
ence between the incident and reflected waves from the surface of
the sample due to the different dielectric properties of materials
(air and sample) at this interface. It is evident from the results that
the electric field within the sample attenuates owing to the micro-
wave power absorbed, and thereafter the microwave power ab-
sorbed is converted to the thermal energy. In case of state (b), it
is similar to state (a) that a larger part of microwaves is absorbed
by the unfrozen layer. In addition, a stronger standing wave with
large amplitude is formed inside the cavity (left-hand side) by
interference between the incident and reflected waves from sur-
face of the sample. Note that the amplitude of electric field inside
cavity (left-hand side) of state (b) is lower than state (a) because
the upper surface of the frozen layer in state (b) (exposed to inci-
dent microwaves) is a highly transparent and it protects the re-
flected wave from this surface.

For the cases with installed a resonator in the waveguide on
both state (a) and state (b), the electric fields with small amplitude
are formed within the sample, while the stronger standing wave
outside the sample (left-hand side) with a lager amplitude is
formed by among the forward wave, the reflected wave from the
sample and the resonator. However, due to the reflections occur-
ring at air-resonator interface, the standing wave can be also
formed at the right-hand side of the sample as seen in the figure.
It is interesting to observe that the electric field intensity in case
of with resonator is greater than in case of without resonator for
both different sample configurations as state (a) and state (b). In
addition, the electric field within the sample attenuates owing to
microwave power absorbed, and thereafter the microwave power
absorbed is converted to thermal energy (similar to case without
resonator).

6.5. Melting process without resonator

This section is presented to examine the melting characteristics
of the layered sample for state (a) and state (b) configuration,
respectively.

6.5.1. The temperature and microwave power absorbed distribution
Fig. 8(a) shows temperature distribution of state (a). It is ob-

served that the skin-depth heating effect causes a major part of
incident waves to be absorbed within the sample, especially at

the leading edge of an unfrozen layer. The temperature distribution
corresponds to the electric distribution in the sample. This is be-
cause the electric field within the sample attenuates owing to
microwave power absorbed, and thereafter the microwave power
absorbed is converted to thermal energy where the maximum
temperature occurs at leading edge of unfrozen layer. It is observed
that temperature distribution within the unfrozen layer display a
wavy behavior while it has no temperature gradient in the frozen
layer due to this layer acts as the transparent material (very low
lossy material). In addition, corresponding to the microwave power
absorbed as displayed in Fig. 8(c), the temperature distribution
within the unfrozen layer decays slowly along the wave propaga-
tion direction.

Fig. 8(b) and (d) illustrates the results of state (b). The incident
microwave is easily further penetrated to the unfrozen layer,
which forms a highly absorptive material. Since an ice in the frozen

27.16
21.13
18.11
9.05

0.00

12.07 12
.0

7

33.19

Width X [mm]

D
ep

th
Z

[m
m

]

0

20

40

60

80

100

39.83

28.97

10.86

0.00

10
.8

6

32.59
36.21 18.1118.11

Width X [mm]

D
ep

th
Z

[m
m

]

0

20

40

60

80

100

2.03

2.03

2.03

2.03
2.03

0.90 0.90

0.90 0.90

Width X [mm]

D
ep

th
Z

[m
m

]

0

20

40

60

80

100

0.00

9.70
4.41
4.41
4.41
4.41

2.65 3.53

Width X [mm]

D
ep

th
Z

[m
m

]

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0 20 40 60 80 100

0

20

40

60

80

100

0.00

a

b

c

d

Fig. 8. Temperature and microwave power absorbed distribution at t = 60 s
(without resonator): (a) temperature of state-a, (b) temperature of state-b, (c)
microwave power absorbed of state-a and (d) microwave power absorbed of state-
b.

2052 K. Chaiyo, P. Rattanadecho / International Journal of Heat and Mass Transfer 54 (2011) 2043–2055



Author's personal copy

layer is a highly transparent material to microwave where it pro-
tects the reflective wave from the expose surface. The latter arises
from the fact that the larger part of microwaves can be absorbed at
the leading edge of the unfrozen layer. The presence of the strength
of microwave power absorbed gives to rise a hot spot at the leading
edge of the unfrozen layer. This causes heat to conduct from the
hotter region in unfrozen layer (higher microwave power ab-
sorbed) to the cooler region (lower microwave power absorbed)
in the frozen layer. It is found that the upward movement of melt-
ing front occurs at the interface between frozen layer and unfrozen
layer where the strength of the microwave power absorbed in-
creases with increasing the melting rate. As melting proceed, the
melting rate is higher in comparison to previous case (state (a))
at the same time. Nevertheless, the frozen layer stays colder due
to the difference between the dielectric properties of water and
ice. This is because water is a highly absorptive material, while
ice is highly transparent which results in a lower microwave power

absorbed within this layer. At exposure time of about 60 s, there is
a difference of about 39.83 �C between the maximum and mini-
mum temperatures.

6.5.2. Melting front
Considerately, Fig. 6 shows the melting front for the case of

state (a) and state (b). For state (a), melting front moves slowly
with the elapsed time along the propagation direction because
the most of heat as well as microwave power absorbed take place
at leading edge of unfrozen layer, which located far away from fro-
zen layer. Consequently, a small amount of heat can conduct to the
frozen layer because the water layer downstream acts as an insu-
lator causing a slow movement of melting front. In state (b), in con-
trast to that state (a), the melting front moves rapidly with the
elapsed time against the wave propagating direction. This is be-
cause the most of the heat directly conduct into the frozen layer
due to the fact that the hot spot takes place at the leading edge
of the unfrozen layer which located close to the frozen layer.

6.6. Melting process with resonator

Fig. 9 illustrates the temperature and microwave power ab-
sorbed distribution in case of with installed resonator at the end
of waveguide. The temperature distribution corresponds to the
electric distribution in the sample. This is because the electric field
within the sample attenuates owing to microwave power ab-
sorbed, and thereafter the microwave power absorbed is converted
to thermal energy as explained in previous subsection. It is ob-
served that temperature distribution within the unfrozen layer dis-
play a stronger wavy behavior similarly case of without resonator.
Since the microwaves can either transmit through sample or reflect
from resonator, a standing wave or resonance is formed within the
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sample. Therefore, the microwave power absorbed as well as heat
transfer rate in the sample is stronger greater than that case of
without resonator. At exposure time of about 60 s, there is a differ-
ence between the maximum and minimum temperatures of about
35.86 �C and 44.44 �C, for state (a) and state (b), respectively.

Furthermore, it is interesting that the temperature profiles
along the center axis (x = 54.6 mm) is greater than that case of
without resonator as shown in Fig. 10. These results combined that
the installation of resonator can lead to enhance a stronger stand-
ing wave or resonance.

Fig. 11 shows the results of melting front in state (a) and state
(b), respectively. For the case of installed resonator, the tempera-
ture and the microwave power absorbed are always higher when
compared with case of without resonator. Thus, the melting front
rapidly moves with elapsed times in comparison to case of no-res-
onator condition. Additionally, it is interesting that melting rate of
state (a) is greater than state (b) because of the difference in stand-
ing wave pattern and microwave power absorbed within sample.

This study shows the capability of the present method to cor-
rectly handle the phase change problem. With further quantitative
validation of the present method, this method can be used as a tool
for investigating in detail this particular melting of phase change in
a porous media at a fundamental level.

7. Conclusions

Mesh quality has the largest impact on solution quality. A high-
quality mesh increases the accuracy of the computational thermal
flow solution and improves convergence. Therefore, it is important
to provide tools for obtaining and improving a mesh. This paper
present, melting of ice-saturated porous medium in a rectangular
waveguide (with and without resonator) subjected to electromag-
netic energy has been investigated numerically. A generalized

mathematical model and an effective calculation procedure are
proposed. A preliminary case study indicates the successful imple-
mentation of the numerical procedure. A two-dimensional micro-
wave melting model is then validated against available
experimental results and subsequently used as a tool for efficient
computational prototyping. Simulation results are in good agree-
ment with available experimental results. The successful compari-
son with experiments should give confidence in the proposed
mathematical treatment, and encourage the acceptance of this
method as useful tool for exploring practical problems. Further-
more, for microwave melting, in case of installed resonator
strongly affects on of temperature and microwave power absorbed
distribution, and melting front rate, because the microwave can
transmit through the sample and then reflect from resonator back
in the sample, forming a standing wave within the sample.

The next step, which has already begun, is to couple the grid
generation algorithm with the complete transport equations that
determine the moving boundary front and buoyancy-driven con-
vection in the liquid. The influence of adjusted meshes number
in each layer on thermal flow solution will be investigated. More-
over, some experimental studies will be performed to completely
validate numerical results.
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